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A B S T R A C T

This article introduces an end-to-end text-to-speech (TTS) system for the low-resourced language of Central
Kurdish (CK, also known as Sorani) and tackles the challenges associated with limited data availability. We
have compiled a dataset suitable for end-to-end text-to-speech that includes 21 h of CK female voice paired
with corresponding texts. To identify the optimal performing system, we employed Tacotron2, an end-to-
end deep neural network for speech synthesis, in three training experiments. The process involves training
Tacotron2 using a pre-trained English system, followed by training two models from scratch with full and
intonationally balanced datasets. We evaluated the effectiveness of these models using Mean Opinion Score
(MOS), a subjective evaluation metric. Our findings demonstrate that the model trained from scratch on the full
CK dataset surpasses both the model trained with the intonationally balanced dataset and the model trained
using a pre-trained English model in terms of naturalness and intelligibility by achieving a MOS of 4.78 out
of 5.
. Introduction

Speech synthesis, commonly referred to as Text-To-Speech (TTS), is
technology that converts input text into speech (Li et al., 2021), a

atural-sounding voice that can communicate with humans (Mundada
t al., 2014). The earliest approach for TTS was a rule-based technique
or characterizing the resonance frequencies of the vocal tract, called
ormant synthesis, which was used for a long time. This strategy uses

language output source-filter model. An artificial speech waveform
s produced using a combination of variables throughout time, includ-
ng fundamental frequencies, voicing, and noise levels (Kayte et al.,
015). Concatenative synthesis by unit selection, a method of joining
maller units of previously recorded waveforms, was state-of-the-art for
while Black and Taylor (1997), Hunt and Black (1996). Concatenative
ethods for speech synthesis have several drawbacks: (a) they require

arge databases to cover various unit sizes, (b) noise captured during
nit recording can degrade the quality of synthesized speech, as the
ecorded units are used as-is in synthesis, (c) they demand extensive
abeling and recording efforts, and (d) they offer low flexibility in
odifying the generated wave signals (Fahmy et al., 2020). Later,

tatistical parametric speech synthesis was introduced (Ze et al., 2013;
en et al., 2009), which eliminated many of the boundary artifacts
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associated with concatenative synthesis. This approach created smooth
trajectories of speech features, which could then be directly synthesized
by the vocoder. Hidden Markov Model (HMM)-based synthesis has
several downsides, including (a) requiring a lot of feature engineering
and domain expertise and (b) producing speech that sounds more
robotic than speech produced via unit selection voice synthesis.

In recent years, TTS methods relying on end-to-end neural network
architecture have dominated both the market and research commu-
nity (Sotelo et al., 2019). Tacotron, employing a sequence-to-sequence
architecture (Sutskever et al., 2014), represents a fully end-to-end
model capable of instantaneously converting input text into a Mel-
spectrogram (Ning et al., 2019). Its successor, Tacotron2, builds upon
this foundation. Tacotron2 comprises two essential components: (a)
a recurrent seq-to-seq generative model with attention mechanisms,
and (b) a modified WaveNet serving as a vocoder for generating voice
signals.

The development of voice synthesis and other natural language
processing (NLP) applications in some languages has been significantly
hindered by the lack of resources, such as speech and text corpora. Kur-
dish language, which is spoken by millions across Western Asia, mainly
in Turkey, Iraq, Iran, and Syria is divided into three major branches:
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Central (also known as Sorani), Northern (also known as Kurmanji),
and Southern Kurdish. Despite its widespread usage, Kurdish faces a
shortage of linguistic resources crucial for computer processing.

Previous efforts in Kurdish TTS have relied on outdated techniques
like concatenation. However, due to the scarcity of language resources
and linguistic expertise in Kurdish, feature engineering for such ap-
proaches is a challenging task that demands extensive language knowl-
edge. To circumvent this issue, we aim to leverage deep neural net-
works to map Kurdish language features directly to acoustic data
with minimal human intervention. Our deep neural network-based TTS
system takes Kurdish text as input, eliminating the need for an external
phoneme dictionary or a pre-trained grapheme-to-phoneme model.

In this article, we focused on utilizing end-to-end deep learning
techniques to enhance the naturalness of a Kurdish TTS system. Since
text and speech corpora are necessary for acoustic modeling and de-
veloping a practical TTS system (Veisi et al., 2022), our primary goal
was to create and collect a CK dataset and create the naturalness of a
Kurdish text-to-speech system based on the Tacotron2 neural network
architecture. This study shows how to synthesize Mel-spectrograms
from CK text as an intermediate feature representation, then utilize a
WaveGlow architecture as a vocoder to produce a high-quality Kurdish
voice using a modified deep architecture from Tacotron2.

Our research seeks to innovate beyond existing TTS models like
Tacotron2 and WaveGlow by integrating novel strategies to enhance
performance and adaptability, especially for CK. We started our work
with transfer learning, fine-tuning pre-trained English models on a
small, high-quality CK dataset to grasp phonetic and linguistic nu-
ances of the language. Subsequently, we used domain adaptation tech-
niques to refine the model, improving performance and reducing data
requirements.

We developed a custom symbol set to accurately represent CK pho-
netics, enhancing computational efficiency. Our prosody-aware model
incorporates rhythm, stress, and intonation for expressive speech syn-
thesis. Additionally, an adaptive noise reduction mechanism in the
WaveGlow vocoder improves speech clarity.

These innovations significantly enhanced our TTS system’s natural-
ness and intelligibility for CK and provide a scalable framework for
other low-resource languages, advancing the field of speech synthesis
technology.

The rest of this work is divided into six sections. The work with
text-to-speech technology is described in Section 2. The creation of the
Kurdish speech corpus is explained in Section 3. The architecture of
the applied model for the Kurdish text-to-speech system is explained in
Section 4. The experimental results are presented in Section 5, and the
study is concluded in Section 6.

2. Related works

2.1. TTS in other languages

In recent years, deep learning has emerged as a transformative ap-
proach within the field of machine learning. A significant development
in this domain is the introduction of WaveNet, a deep neural network
designed to generate raw audio waveforms, as presented in van den
Oord et al. (2016). This model was trained and tested using 24.6 h of
English data and 34.8 h of Mandarin Chinese data, achieving a Mean
Opinion Score (MOS) of 4.0.

Subsequently, Tacotron, an end-to-end text-to-speech (TTS) model,
was proposed by the authors in Wang et al. (2017). The model was
trained on 24.6 h of North American English speech data, attaining a
MOS of 3.82.

Additionally, the researchers in Sotelo et al. (2019) introduced
Char2Wav, another end-to-end voice synthesis model. Char2Wav com-
prises two components: the readers and a neural vocoder. The system
utilized normalized WORLD vocoder features both as targets for the
2

readers and as inputs for the neural vocoder. The model was trained
using the VCTK and DIMEX-100 datasets.

Deep Voice 2 (Arik et al., 2017) represented an upgraded archi-
tecture from Deep Voice 1, introducing multi-speaker capabilities via
speaker embeddings. The model was trained on two datasets: 20 h of
English single-speaker speech and 44 h of multi-speaker VCTK data.
Utilizing an 80-layer WaveNet vocoder, Deep Voice 2 achieved a MOS
of 3.53.

Subsequently, Deep Voice 3 (Ping et al., 2018) was proposed as a
fully convolutional attention-based sequence-to-sequence model, with
a comparative analysis against recurrent neural network (RNN) archi-
tectures. Various waveform generation techniques were explored, with
WaveNet consistently yielding superior performance. The model was
trained independently on three datasets: 20 h of English single-speaker
speech, 44 h of multi-speaker VCTK, and 820 h of LibriSpeech data.
When combined with the WaveNet vocoder, Deep Voice 3 obtained an
MOS of 3.78.

Tacotron-2 (Shen et al., 2018a) was trained on 24.6 h of USA-
English speech data, achieving a mean opinion score (MOS) of 4.53.
ClariNet (Ping et al., 2019) introduced a novel parallel wave generation
approach based on the Gaussian inverse autoregressive flow (IAF),
representing the first fully convolutional text-to-wave neural network
for speech synthesis, with an MOS of 4.15.

In the context of rhythmic and natural Chinese voice
synthesis, Zhang et al. (2019) proposed a Tacotron model that incorpo-
rated prosodic annotations, trained on 10.38 h of the BZSYP database.
Their approach outperformed the baseline system trained without
prosodic annotations. Additionally Lu et al. (2019) explored end-to-
end Chinese speech synthesis using Tacotron2 and WaveNet vocoder,
trained on 31 h of Chinese data, yielding a statistically significant
improvement (𝑝-value = 0.001).

Authors in Li et al. (2019) presented a transformer network for
neural speech synthesis, converting all text inputs to phonemes. They
trained their model using a 25-hour dataset of US English female
speech, achieving 4.39 by using MOS evaluation.

A rapid and robust approach similar to transformers, known as
FastSpeech, was proposed by Ren et al. (2019). Using the 24-hour
LJSpeech dataset, FastSpeech achieved a MOS of 3.84. However, Fast-
Speech had some limitations, such as a complex and time-consuming
teacher–student distillation pipeline, imprecise length predictions from
the teacher model, and information loss in target Mel-spectrograms due
to data simplification. These issues affected the overall voice quality.

Authors of Ren et al. (2022) presented FastSpeech-2, a quick and
high-quality end-to-end text-to-speech model. The model was trained
on the LJSpeech dataset, which contained about 24 h of speech dataset.
FastSpeech 2 achieved a MOS of 3.83.

Deepmind developed EATS-end-to-end adversarial text-to-speech
generative model (Donahue et al., 2022). They utilized a private
dataset comprising 260.49 h of speech from 69 male and female North
American English speakers. The model achieved a MOS of 4.083.

In Vainer and Dušek (2020) SpeedySpeech, a convolutional system
for generating phoneme-based spectrograms, was developed. This sys-
tem enables quick training and synthesis while maintaining superior
voice quality compared to robust baseline methods. The model was
trained and tested on the LJSpeech dataset, which includes 13,100 text-
audio pairs. To evaluate the model, a survey based on
MUSHRA (Schoeffler et al., 2018) was conducted with 40 participants.
The results showed that SpeedySpeech, with MelGan, significantly
outperformed Tacotron2, achieving an average score of 75.24.

Authors of Liu et al. (2020a) suggested the novel two-task learning
scheme. 17 h of Mongolian speech data and TH-CoSS (TsingHua-Corpus
of Chinese Speech-Synthesis) were used. They used the Griffin-Lim
algorithm for waveform generation in all schemes. They achieved a
MOS of 3.91 for Chinese and a MOS of 3.83 for Mongolian. In Liu
et al. (2020b), for the neural end-to-end TTS framework, they present a
Tacotron-2-KD (knowledge-distillation) framework, the teacher
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-student-training system. They utilized Chinese and English datasets.
The suggested approach reached a MOS of 3.93 for English and a
MOS of 3.94 for Chinese. He et al. (2020) suggested the DOP Tacotron
module. 12 h of the biaobei speech corpus in Mandarin were utilized
in their experiment. 50 sentences were chosen to evaluate the model.
The MOS of DOP Tacotron is 3.683, which is higher than that of the
original Tacotron.

In Hayashi et al. (2020), ESPnet-TTS, an expansion of the free and
open-source ESPnet speech processing tools, was released. Their tool-
box supports E2E-TTS models in addition to a number of TTS recipes
with a design that is consistent with automatic speech recognition
(ASR) recipes, which offers good repeatability. The MOS for their model
on the LJSpeech dataset was 4.25. In Fahmy et al. (2020), Tacotron2 is
used to create high-quality and human-like Arabic speech. They trained
the model on 2.41 h of the Nawar Halabis Arabic dataset by utilizing
the pre-trained English model. They achieved a MOS of 4.21. In Weiss
et al. (2021), the Wave-Tacotron sequence-to-sequence neural network
introduced which directly converts text inputs into voice waveforms.
The approach extends the Tacotron model by adding a normalizing flow
into the autoregressive decoder loop. Hundreds of samples are included
in each of the output waveforms’ non-overlapping, fixed-length blocks.
Two single-speaker datasets were used to train and test their model,
including the public LJ speech dataset and a private dataset with
around 39 h of speech. A MOS of 4.47 was attained. A TTS system
based on Tacotron2 was proposed by Naderi et al. (2022) for Persian.
They created 21 h of Persian speech dataset to train their model. They
obtained different values when evaluating their model from MOS 3.01
to MOS 3.97.

Tacotron2 was utilized by Win and Masada (2020), who trained
their model on 5 h of Myanmar corpus. Their result was MOS = 3.89.
Similarly, Tacotron2 and DeepVoice 3 were implemented on low re-
source Afan Oromo dataset by Shifera (2021). As a result, they found
that the Tacotron2 model with an MOS of 4.32 on 5 outperformed the
DeepVoice 3 model with an MOS of 3.28.

The problems with human-level quality in TTS were the subject of
a thorough investigation in Tan et al. (2022). To reach human-level
quality, they developed a TTS system called NaturalSpeech. Experiment
evaluations on the well-known LJSpeech dataset reveal that their pro-
posed NaturalSpeech achieves 0.01 CMOS (comparative mean opinion
score) to human recordings at the sentence level, with Wilcoxon signed
rank test at p-level 0.05, which for the first time on this dataset demon-
strates no statistically significant difference from human recordings.

2.2. Kurdish TTS works

Research on Kurdish TTS is still in its early stages compared to
other languages. Kurdish, a language within the Indo-European lan-
guage family (Thackston, 2006), utilizes two scripts: a modified Arabic
alphabet and a modified Latin alphabet (Sejnowski and Rosenberg,
1987).

Several synthesis models for Kurdish TTS, including allophone,
syllabic, and diphone-based approaches, were developed (Bahrampour
et al., 2009). The allophone-based approach yielded the poorest qual-
ity and proved the most challenging to implement. In contrast, the
syllable-based approach demonstrated excellent overall quality and
intelligibility. However, the diphone-based TTS system provided the
highest quality among the three. In the same year, a comparative
study of these three Kurdish TTS systems—utilizing concatenation—
was conducted in Barkhoda et al. (2009). The diphone-based TTS
system achieved the highest quality, with a Diagnostic Rhyme Test
(DRT) score of 97%. Additionally, in Daneshfar et al. (2009), an al-
lophone unit was used in a concatenative synthesis approach, which
also scored well for intelligibility.

A further enhancement in natural-sounding CK speech synthesis was
achieved through a concatenative synthesis approach utilizing diphone

units to smooth transitions between phonemes, as detailed in Hassani

3

et al. (2011). This method resulted in speech with high intelligibility
ratings.

In a prior work (Muhamad and Veisi, 2022), a Central Kurdish TTS
system was developed using transfer learning from an English pre-
trained model, supplemented by 10 h of CK speech data. As we will
describe in the next sections, we similarly trained our first model using
transfer learning from an English pre-trained model, but we utilized
a larger dataset (21 h) and we employed WaveGlow vocoder instead
of HiFi-GAN to produce higher-quality, more natural-sounding speech.
The relevant papers are summarized and their important points are
shown in Table 1.

3. Creation of central Kurdish speech corpus

Speech corpus is one of the most important requirements for data-
driven text-to-speech synthesis systems. A speech corpus is a collection
of text and equivalent audio pairs. Since there were no previously
available large-scale speech Kurdish corpora, for this study, we created
a new one from scratch. In this section, we will explain the details of
the design, compilation, and challenges of this process.

3.1. Text data collection

In this study, we aimed to construct a phonetically rich and bal-
anced CK speech corpus by gathering a large amount of raw text from
diverse sources. The resulting corpus represents a wide array of lin-
guistic features and domains, enhancing the quality of the TTS system.
Our primary sources for the raw text compilation were various me-
dia outlets such as www. Rudaw.net, www.gksat.tv, www.xendan.org,
www.nrttv.com, and www.kurdistantv.net, along with select textbooks
on General Psychology and Psycholinguistics.

From these sources, we collected a total of 10,979 utterances, span-
ning 14 distinct categories including news, sports, linguistics, psychol-
ogy, poetry, health, scientific topics, general knowledge, interviews,
politics, education, literature, narratives, tourism, and miscellaneous
subjects. The deliberate selection of these diverse categories ensures
comprehensive coverage of CK sentences, aligning with the multi-
faceted applications of TTS systems. Table 2 provides a breakdown of
the utterance categories and the corresponding counts, illustrating the
breadth of subjects covered in our corpus.

Furthermore, we curated a test set comprising 110 sentences
sourced from a diverse array of texts representing 17 distinct subject
areas. These sentences were carefully chosen to ensure differentiation
from those in the training set. Initially gathered from various websites,
the selected phrases underwent further refinement. The topics of the
chosen test sentences are listed in Table 3, along with the number of
sentences for each category.

Subsequently, the texts underwent normalization in accordance
with CK orthographic standards Automated_Kurdish_Text_ Normaliza-
tion. Additionally, non-Kurdish (Arabic and English) words within the
texts were transliterated. Cardinal and fractional numbers, dates, times,
and currencies were then substituted with their Kurdish equivalents
utilizing an open-source library.1 For instance, the date ‘‘ ’’
was transformed into ‘‘ ’’. A few
samples of normalized Kurdish text are shown in Table 4.

3.2. Audio recording

The collected sentences were recorded using professional voice
recording equipment in a studio environment. The speaker, a female
in her thirties originally from Sulaimania city, delivered the sentences
phonetically close to the dialect of that city. The audio files were
recorded in 22050 Hz sampling rate, 16-bits depth, mono-channel, and
stored as .wav format. The audio recording process took 41 days. After

1 github.com/AsoSoft/AsoSoft-Library

https://github.com/AsoSoft/AsoSoft-Library
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Table 1
Summarizing the main points of the literature review.

No. Ref. Year Method Dataset Result

1 van den Oord et al. (2016) 2016 WaveNet -North American English (24.6 h)
-Mandarin-Chinese (34.8 h)

MOS 4.0

2 Wang et al. (2017) 2017 Tacotron -North American English dataset MOS 3.82
3 Sotelo et al. (2019) 2017 CHAR2WAV The VCTK and DIMEX-100 datasets Their result was sufficient
4 Arik et al. (2017) 2017 Deep Voice 2- Multi speaker neural TTS English single-speaker (20 h)

VCTK dataset multi-speaker (44 h)
MOS 3.53

5 Ping et al. (2018) 2017 Deep Voice 3- a fully convolutional
attention-based TTS

English single-speaker (20 h)
VCTK dataset multi-speaker (44 h)
Librispeech multi-speaker (820 h)

MOS 3.78

6 Shen et al. (2018b) 2018 Tacotron-2 US English (24.6 h) MOS 4.526
7 Ping et al. (2019) 2019 Clarinet: Parallel WaveNet. An internal-English-speech dataset (20 h) MOS (4.15)
8 Zhang et al. (2019) 2019 Tacotron BZSYP-Chinese database (10,000 audio

samples).
84%

9 Lu et al. (2019) 2019 Tacotron-2 and Wavenet vocoder. Chinese dataset (31 h) Significant (p value = 0.001)
10 Li et al. (2019) 2019 Transformer-based TTS US English dataset MOS 4.39
11 Ren et al. (2019) 2019 FastSpeech- non-autoregressive End to

End
LJSpeech dataset (24 h) MOS 3.84

12 Ren et al. (2022) 2020 FastSpeech 2- End to End TTS LJSpeech dataset (24 h) MOS 3.83
13 Donahue et al. (2022) 2020 EATS-end-to-end adversarial text to

speech
North American English dataset
(260.49 h)

MOS 4.083

14 Vainer and Dušek (2020) 2020 SpeedySpeech LJSpeech dataset 75.24
15 Liu et al. (2020a) 2020 MTL-Tacotron TH-CoSS (TsingHua- Chinese Corpus).

(9 h)
Mongolian speech data (17 h)

MOS-Chinese 3.91
MOS-Mongolian 3.83

16 Liu et al. (2020b) 2020 Tacotron-2-KD English and Chines datasets MOS-English 3.93
MOS-Chinese 3.94

17 He et al. (2020) 2020 DOP-Tacotron Biaobei speech corpus, Mandarin (12 h). MOS 3.683
18 Hayashi et al. (2020) 2020 ESPnet-TTS LJSpeech dataset MOS 4.25
19 Fahmy et al. (2020) 2020 Tacotron2- Transfer Learning Nawar Halabi’s Arabic Dataset (2.41 h) MOS 4.21
20 Win and Masada (2020) 2020 Tacotron2 Myanmar corpus (5 h) MOS 3.89
21 Shifera (2021) 2021 Tacotron2 and Deepvoice3 Afaan Oromo (17 h) MOS 4.32
22 Weiss et al. (2021) 2021 Wave-Tacotron LJSpeech dataset

private dataset (39 h)
MOS 4.47

23 Naderi et al. (2022) 2022 Tacotron2 Persian dataset (21 h) MOS 3.01 – 3.97
24 Tan et al. (2022) 2022 NaturalSpeech LJSpeech dataset CMOS 0.01
25 Bahrampour et al. (2009) 2009 Concatenative (Allophone, Syllable, and

Diphone)
Kurdish Allophone MOS 2.45

Syllable MOS 3.02
Diphone MOS 3.51

26 Barkhoda et al. (2009) 2009 Concatenative (Allophone, Syllable, and
Diphone)

Kurdish Best quality score 3.5
Best DRT 97%

27 Daneshfar et al. (2009) 2009 Concatenative (Allophone) Kurdish (2100 words) Best quality score 2.4
28 Hassani et al. (2011) 2011 Concatenative (Diphone) Kurdish (2100 words) Best quality score 55%
29 Muhamad and Veisi (2022) 2022 Tacotron2-transfer learning Kurdish (10 h) MOS 4.10
Table 2
The total of the train utterances.

Category No. of Utterances

linguistics 1760
questions and exclamation 1393
story 1092
poem 916
tourism 782
miscellaneous 700
sport 683
education and literature 619
news 608
science 543
health 483
politics 483
general information 461
interview 456
Total 10,979

meticulously refining the recordings, the duration of the final speech
data is 21 h. This collection is denoted as the Sabat speech corpus,
serving as both our text and audio datasets for training and testing our
model.

The lengths of recorded audio files are between one and twelve sec-
onds. The average audio length is 6.89 s. Fig. 1 displays the distribution
of the dataset according to the length.
4

Table 3
The test set sentences were distributed throughout many areas.

Topics No. of Sentences

news 10
formal letter 10
sport 9
poem 8
questions 7
psychology 6
health 6
science 6
miscellaneous 6
general information 6
story 6
tourism 6
linguistics 5
interview 5
politics 5
education and literature 5
exclamation 4
Total 110

After the recordings were made, we identified minor pronunciation
or intonation errors, as well as dialectal variations. Rather than ne-
cessitating a return to the studio for speaker correction, we opted to
adjust the text to match the speaker’s voice. This involved modifying
the spelling and punctuation of certain utterances to align with the
speaker’s articulation, intonation, and speech junctures.
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Table 4
Examples of Kurdish text normalization.

Input text Normalized text English

sallallahou alayhe wasallam (Arabic blessing after
mentioning prophet Muhammad)

iOS iOS (a mobile operating system)
fifteen
four point sixty-three

first of the eleventh month of two thousand
twenty-one
Fig. 1. Distribution of length of sentences of the dataset.

able 5
pecifications of ‘‘Sabat Speech Corpus’’.
Feature Sabat dataset

Total audio length 21 h (75,626 s)
Audio file format .wav (22.05 kHZ, 16-bits, mono)
Text file format .txt (UTF-8)
Sampling rate 22,050 Hz
Number of audio files 10,979
Longest audio length 12.97 s
Shortest audio length 1.01 s
Average audio length 6.89 s

Furthermore, since the audio files were recorded on different days,
ariations in volume were observed across some recordings. To ensure
niformity, manual adjustments were made to equalize the loudness of
hese recordings. Table 5 shows the general specifications of our final
peech corpus.

. Research method

End-to-end neural network designs offer a significant advantage
ver traditional voice synthesis approaches by eliminating the need
or extensive domain expertise and labor-intensive feature engineering.
hese networks require minimal human annotation and can be trained
o respond to any language, gender, or emotion. In contrast, traditional
TS synthesizers operate through multiple phases, each requiring inde-
endent training. This multi-stage process can lead to error propagation
cross stages. End-to-end architectures, being designed as a unified
ystem, are inherently more resilient to such issues.

.1. System architecture

Outlined in Fig. 2, our proposed methodology proceeds through
everal key stages. We begin by curating a dataset of ‘‘text, audio’’ pairs
eaturing a single female speaker, as detailed in Section 3. Through pre-
rocessing steps, including text normalization, we prepared the input
ata for our TTS system. A sequence-to-sequence synthesis network
ased on Tacotron2 (Shen et al., 2018a) was used to predict the mel
pectrograms, which are then transformed into audible sounds using

he WaveGlow (Prenger et al., 2019) vocoder.

5

Fig. 2. Block diagram of our approach.

The choice of Tacotron2 as the base model for our speech synthesis
system is driven by its efficient and effective architecture, which is
well-suited to address the specific challenges of CK. Tacotron2 employs
an end-to-end approach, utilizing only two stages: an acoustic model
and a vocoder. This simplifies the training process and reduces the
complexity typically associated with TTS systems that use multiple
stages. The acoustic model, a recurrent neural network, predicts a
sequence of Mel spectrograms from an input letter sequence, while
the WaveGlow vocoder (Prenger et al., 2019) generates time-domain
waveforms from these spectrograms. Given that CK has a nearly one-
to-one correspondence between phonemes and letters, the simplicity
of its phonetic structure makes the creation of a TTS system more
straightforward and requires less data compared to languages with
more complex phonetics. Tacotron2’s ability to learn directly from
speech and corresponding text, without the need for extensive phonetic
annotations or multiple processing stages, makes it an ideal choice for
developing a high-quality TTS system for CK.

As shown in Fig. 3, the Tacotron2 architecture is an encoder-
attention-decoder paradigm that takes advantage of ‘‘location-sensitive
attention’’. First, an encoder creates a word embedding vector from
the input character sequence. From the embedding vector, the decoder
generalizes the corresponding spectrograms. The WaveGlow vocoder
constructs the real voice waveform from the predicted spectrograms
produced by Tacotron2.

Tacotron2 and WaveGlow networks are trained independently in
our approach. The Tacotron2 model is specifically trained on our CK
speech corpus. For the WaveGlow vocoder, we utilize a pre-trained
model based on the LJSpeech corpus, which is then adjusted to syn-
thesize CK speech. Notably, the WaveGlow vocoder has demonstrated
effectiveness with unseen languages and speakers (Hsu et al., 2019).

In this research, we have developed and trained three distinct mod-
els. Detailed descriptions of these models are provided in the following
subsections.

4.2. Model 1: Transfer learning to Kurdish from an english model

Transfer learning, which involves starting with a pre-trained model
on a large dataset and fine-tuning it on a smaller, domain-specific
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Fig. 3. The Tacotron2 model’s block diagram (Shen et al., 2018a).

dataset, offers significant advantages. We implemented our first model
by leveraging a pre-trained English model to utilize the learned linguis-
tic features and general speech patterns, to reduce the computational
resources needed to achieve high-quality results. Implementing this
model involves several steps:

1. Preparing the Pre-trained Model: The first step is downloading
an English pre-trained model2 and then uploading it into the
model.

2. Fine-Tuning Dataset Preparation: The dataset collected for CK
TTS is used to train the model where the texts are character-
level. Furthermore, the dataset is split into two (train and val-
idation) files, %95 of the data used for the train and %5 of
the data used for the validation file, and updated both of them
in the hparams file. The text preprocessing step encodes the
input text into a list of symbols. We define the set of symbols
because the pre-trained Tacotron2 model requires a specific
set of symbol tables. For instance, we can use ‘‘_-!’(),.:;?’’ and
‘‘abcdefghijklmnopqrstuvwxyz’’. Each character of the input text
is mapped to its corresponding symbol’s index in the table.

3. Spectrogram Generation: The Tacotron2 model generates spec-
trograms from the encoded text.

4. Waveform Creation: Finally, the generated spectrogram is con-
verted into a waveform using the WaveGlow vocoder.

4.3. Model 2: Trained from scratch using full dataset

The second model was trained using Tacotron2 from scratch on our
entire speech dataset. For implementation of this model, following steps
have been done:

1. Initialization of Model Weights: Since we train this model
from scratch, the English pre-train model is not downloaded for
the training process. We prepare the initial weights randomly
and then get the weights during training.

2. Dataset Preparation: We use the collected dataset to train
the model where the texts are character-level. Furthermore,
the dataset is split into two (train and validation) files, %95
of the data used for the train and %5 of the data used for
the validation, and updated in the hparams file. In the text
preprocessing step, we need to define a set of symbols. For
example, in the symbol file, we use ‘‘ ’’
and ‘‘ ’’ . The next step is

2 Download link: https://drive.google.com/file/d/1bwL6Bz8Yohs_iCjWCk0
RPruBZUVsXH4/view?usp=sharing.
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mapping each character from the input text to its corresponding
symbol’s index in the table, indicating that the input text is
encoded into a set of symbols.

3. Spectrogram Generation: A spectrogram is created from the
encoded text. For this purpose, we employed the Tacotron2
model.

4. Waveform Transformation: The final step is to transform the
spectrogram into a waveform. The term ‘‘vocoder’’ also refers
to the process of producing speech from a spectrogram. For this
purpose, a WaveGlow vocoder was employed.

4.4. Model 3: Trained from scratch using intonationally balanced dataset

One of the limitations of prosody-aware models is their complex-
ity and the extensive amount of data required to accurately capture
prosodic features, including sentence intonation, which can be par-
ticularly challenging for less-resourced languages like Kurdish. Our
Tacotron2-based approach overcomes these limitations by leveraging
its end-to-end architecture, which simplifies the process and reduces
the need for large datasets. By focusing on character-level text and
utilizing a straightforward mapping to symbols, we can efficiently
train the model from scratch, achieving high-quality speech synthesis
without the intricacies associated with prosody-aware models.

Our dataset initially consisted of 10,979 text-audio pairs, with the
majority being declarative sentences. To improve prosody in question
and exclamation sentences, we reduced the training speech data from
21 h to 12 h. This adjustment aimed to strike an equilibrium between
questions, exclamations, and declarative sentences, ensuring a more
balanced learning experience for the model. Following the dataset’s
rebalancing process, we arrived at 7079 text-audio pairs. Each category
– news, sports, poetry, questions, and exclamations – now comprises
1416 sentences. We then trained the Tacotron2-balanced data model
from scratch. WaveGlow vocoder was utilized to synthesize the speech
sound.

5. Experimental results

5.1. Training setup

We trained a neural network-based TTS system using our CK dataset,
which comprises approximately 21 h of female speaker voice data. As
detailed in Section 3, this dataset consists of text and audio pairings.
The input text is in Kurdish characters, and the audio is sampled at a
rate of 16-bit, 22050 Hz. The audio segments vary in length from 1 to
12 s. The models were initially trained entirely on Google Collaboratory
Pro+ using a Tesla V100-SXM2-16 GB GPU.

Experiment 1 (Model 1): Using english pre-trained model

In the first experiment, we divided the dataset into training and
validation sets. The training set contained 10,529 transcript lines, while
the validation set contained 450 lines. Importantly, no training data
was included in the test set, which is detailed in Section 3.1. All texts
underwent normalization, where numbers and non-Kurdish characters
were converted to Kurdish.

After preprocessing, we obtained numerical sequences and mel-
spectrograms, stored in NumPy arrays and saved as .npy files. The
implementation consists of two phases: a training phase and a syn-
thesis phase, with the latter utilizing a WaveGlow vocoder to generate
synthetic speech.

Training was conducted using the following steps:

• Character Conversion and Transfer Learning: CK words were
converted into English characters, and transfer learning from
English models was utilized.
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Fig. 4. Examples of alignments at different iterations of the training model for the pre-trained TTS model (Model 1).
Table 6
Final value of the training model hyper-parameters.

Hyper-parameter Values

Epochs 2000
Batch-size 8
Attention dropout 0.1
Decoder dropout 0.1
Decay start 15,000
Learning rate 1e−5
Weight decay 1e−6

• Attention Mechanism Training: The attention mechanism was
fully trained using the pre-trained English model, incorporating
the learned English character integration.

The audio training samples had a sampling rate of 22050 Hz to match
the audio parameters of an open-source implementation trained on the
LJS-speech dataset, including hop length and filter length.

The alignment graph is used to assess the precision of the alignment
between input characters and output waveform structures. A diagonal
alignment map indicates that the model can generate understandable
speech, having effectively learned to solve the sequence-to-sequence
problem between the input text (encoder stages) and output spectro-
gram (decoder stages). Monitoring the alignment plots throughout the
training process is crucial; if the plots do not appear linear, retraining
is necessary. Alignment graphs were taken at various stages of training,
with examples shown every 25,000 steps. On average, each epoch
of training took approximately 15 min, while generating a waveform
took about 2 s. Some alignment graphs from our proposed model are
displayed in Fig. 4.

The values of the dropout and learning degree are obtained in a try-
and-error manner, and the values of other parameters are taken from
previous similar works (Shen et al., 2018a). The training parameters
for Model 1 are presented in Table 6.

In the synthesis phase, the pre-trained WaveGlow model is uti-

lized in the vocoder. This model is only used during inference and is

7

robust to variations in gender and language, making its direct appli-
cation a sound choice. Consequently, this approach reduces both the
computational load and the overall training time.

Experiment 2 (Model 2): Train the model from scratch

By adjusting the hyperparameters for our dataset, we trained the
Tacotron2 feature prediction model, which is based on a recurrent
neural network (RNN). Tacotron2 was trained from scratch on the 21-
hour CK dataset using an open-source implementation. We used a batch
size of 40 for our training. Choosing the right batch size is crucial, as
a smaller batch size led to deteriorated results. Therefore, we opted for
a larger batch size to achieve high-quality results and accelerate model
convergence.

Training was notably slow due to the use of an RNN. The training
process utilized mel spectrogram representations of the raw audio
waves. Each experiment involved training the model for 500,000 steps.
Throughout the iterative training process, we generated alignment
graphs, and by 10,000 steps, the model began to produce acceptable
results.

By adjusting the hyperparameters, we trained the Tacotron2 feature
prediction model, which is based on a recurrent neural network, using
our dataset. This training was conducted from scratch on the 21-hour
CK dataset utilizing an open-source implementation.3

During the iterative training process, we used alignment graphs to
monitor the model’s progress, as depicted in the figures. Notably, the
experimentation yielded acceptable results at around 10,000 steps (it-
erations). The alignment graph demonstrates how accurately the input
characters align with the output waveform structures. As mentioned, in
previous subsection, a diagonal alignment map indicates that the model
can produce intelligible speech, having successfully learned to solve the
sequence-to-sequence problem between the input text (encoder stages)
and output spectrogram (decoder stages). Throughout the training

3 https://github.com/NVIDIA/tacotron2

https://github.com/NVIDIA/tacotron2
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Fig. 5. Some alignments at different epochs in training of experiment 2.
.

rocedure, it is critical to keep an eye on the alignment plots; if they do
ot appear to be linear, the training should be redone. Some alignment
raphs derived from our model are shown in Fig. 5.

According to the open-source implementation, each decoding step
enerates one frame. The values of the adopted and learning rate
re obtained in a tray an error manner, while the values of other
arameters are occupied from previous similar works (Shen et al.,
018a). WaveGlow was utilized in this experiment to transform the
redicted acoustic features into waveforms of the audio. The subjective
ating of this experiment was positive. On average, each training epoch
asted approximately 20 min, while generating a waveform typically
ook around 2 s. The training hyperparameters are presented in Table 7.

xperiment 3 (Model 3): Training the model from scratch using balanced
ata

To enhance the prosody of the generated speech signal, particularly
or exclamatory and interrogative sentences, we balanced our dataset
y equalizing the number of sentences across these categories and other
ypes (e.g., news sentences). Initially containing 10,979 (text, audio)
airs, we reduced the dataset to 7079 sentences, resulting in a total
f 12 h of data. This dataset was then used to train the Tacotron2
odel from scratch. The dataset reduction was aimed at achieving a
8

Table 7
Final values of the training model hyperparameters for model 2 (trained from scratch)

Hyperparameter Value

Epochs 2000
Batch-size 40
Attention dropout 0.4
Decoder dropout 0.1
Decay start 15 000
Learning rate 1e−5
Weight decay 1e−6

balance among all sentence types to effectively capture the intonation
of question and exclamation sentences. We employed the open-source
TensorFlow version of Tacotron2 from NVIDIA/Tacotron2 for this pur-
pose, utilizing the WaveGlow vocoder for waveform synthesis instead
of WaveNet.

The implementation comprised two phases: in the training phase of
the feature prediction network, we used a batch size of 40, an attention
dropout rate of 0.4, and trained the data over 2000 epochs. Throughout
the training process, alignment graphs were generated to aid model
refinement. Notably, acceptable outcomes were observed after 6k steps.
The attention alignment during training is illustrated in Fig. 6.
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Fig. 6. Attention alignments during training for the third experiment.
In the synthesizing phase, the WaveGlow vocoder with default
yperparameters was used to synthesize audio waveforms.

Optimizing the learning rate, a crucial hyperparameter in neural
etworks, presents certain challenges. It dictates the magnitude of ad-
ustments during training, with lower rates often necessary for accuracy
nhancement. However, this necessitates longer training times and
ultiple iterations to prevent overfitting, particularly in datasets with

imited samples. Various tools are available to aid in this process. In our
ase, we conducted extensive tests on the dataset, varying the learning
ate. Additionally, we referenced relevant studies, such as those in
oogle TTS, for initial setup and testing. These studies utilized low

earning rates, like 0.001 and 0.0001. Interestingly, in our experiments,
learning rate of 0.00001 yielded the best results across all three

xperiments. We balanced training speed and stability by setting a
atch size of 8 for the first experiment and 40 for the second and third
xperiments. Furthermore, we maintained a sequence length typically
anging between 800 and 1200 frames, balancing memory usage and
ontext capture. Sequences were either padded or truncated to ensure a
ixed length. These hyperparameters are pivotal in optimizing training
fficiency, ensuring efficient memory utilization, steady convergence,
nd high-quality voice synthesis.

.2. Evaluations

We conducted a subjective assessment to measure the naturalness
nd comprehensibility of our trained models. This evaluation utilized
he Mean Opinion Score (MOS) as the metric. MOS involves a group
f evaluators, ideally native speakers or language experts, who rate
arious synthetic speech samples on a scale of 1 (very bad) to 5 (very
ood). These assessments are conducted in a controlled environment,
ith evaluators listening to recordings and assigning scores. The mean

core is then calculated by summing all sample scores and dividing
y the total number of samples. This process yields an overall MOS,
roviding a single numerical measure of speech quality. We recruited
2 native speakers, comprising 7 males and 5 females, with ages
anging from 21 to 46, to assist in the MOS assessments. The evaluation
9

Table 8
The MOS results of the proposed models.

Models Result (MOS)

Genuine Voice 4.99
Model 1 (using English pre-trained) 4.10
Model 2 (scratch) 4.78
Model 3 (balanced data) 4.57

involved 110 sentences from the test set (outlined in Section 3.1),
which were distinct from those used in training.

Each participant was asked to listen and rate four distinct sets
of sounds: the genuine voices from the test set, along with three
synthesized voice sets generated by models trained over 2000 epochs
(500,000 iterations). They heard each set through headphones and
subsequently rated them on a scale of five points: 5 for excellent, 4
for good, 3 for neutral, 2 for poor, and 1 for very poor. Table 8 shows
the overall MOS results of the evaluations.

Fig. 7 Illustrates a comparative analysis of the MOS results of four
evaluations across distinct categories of the sentences.

Although the results we obtained from the first model trained using
an English pre-trained model were outstanding in terms of quality,
there were issues regarding the understanding and pronunciation of
some words and letters. Table 9 presents several cases where the model
produces incorrect sounds in the first experiment.

We conducted experiment 3 to see if our model would better read
the intonation of questions and exclamation sentences compared to
previous experiments. The MOS result of this experiment (MOS = 4.57)
is lower than the MOS result of the second experiment (MOS = 4.78).
However, the primary purpose of the third experiment was to increase
the (MOS) score of the second experiment, especially the intonation of
questions and exclamation sentences. The results indicated that there
were no significant differences between the second and third experi-
ments with respect to the naturalness, intelligibility, and intonation of
questions and exclamation sentences, as shown in Table 10.

The third experiment did not show an improvement in MOS due
to the limited amount of training data and the presence of some
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Fig. 7. Results of the genuine and the proposed models (average of MOS) about all different categories.
Table 9
Some instances where the model generates incorrect sounds in the first experiment.
Table 10
The average MOS for questions and exclamation sentences in two models.

Sentence Type Model 2: trained on
10,979 sentences

Model 3: trained on 7079
sentences (balanced data)

Question sentences 4.96 4.90
Exclamation sentences 4.95 4.91

Table 11
Comparison of MOS results between our model and the model presented in Muhamad
and Veisi (2022) on identical test sets.

Method Result (MOS)

The model presented in Muhamad and Veisi (2022) 4.10
Our model trained from scratch using the full dataset 4.78

noisy data, which included minor issues with the intonation of the
recorded sentences. Consequently, the model reads some question and
exclamation sentences as declarative sentences.

In summary, after evaluating all three experiments, we found that
the second experiment produced the best model for CK text-to-speech
in terms of naturalness and intelligibility.

5.3. Comparison results

Table 11 compares the MOS result of our best model with the
previous Kurdish TTS work [42] trained on a 10-hours CK dataset
and using the English pre-trained model on identical test sets. The
MOS results show that our model trained from scratch on the 21-
hours CK dataset, significantly outperforms in terms of naturalness and
intelligibility.

6. Conclusion and future works

In this research, we assembled a comprehensive 21-hour Central
Kurdish (CK) speech corpus and developed a CK text-to-speech system
using Tacotron2 architecture. Tacotron2 utilizes a recurrent sequence-
to-sequence feature prediction network with attention to predict mel
spectrogram frames from input character sequences.
10
Our findings demonstrate that our Tacotron2-based system achieves
both satisfactory intelligibility and naturalness in synthesized speech
output. Notably, our second experiment, the model trained from scratch
on the CK dataset, surpassed the results of experiment 1 (Tacotron2
model trained via pre-trained English model) and experiment 3 (same
architecture as experiment 2 but using balanced dataset) in terms of
both naturalness and intelligibility, as per subjective evaluations.

Based on the insights from our assessment, the Tacotron2, trained
from scratch and based on a recurrent neural network model, is suitable
for practical text-to-speech applications. The proposed system can be
used for audiobooks, recommendation systems, phone inquiry service,
and smart education.

The data used to train the models were collected in the central
dialect of Kurdish. Future work will include training the model in
other dialects of the Kurdish language, such as Northern, Southern, and
Hawrami.

Adding sentiment analysis to future Kurdish text-to-speech systems
enhances contextual awareness. By analyzing text emotions, the system
adjusts intonation and emphasis, improving the synthesized speech’s
naturalness and contextual appropriateness.

We will consider using transformers instead of RNN-based Tactron2
to train our dataset.
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